ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Помехозащищенностью преимущества возможность использования любого. Общая характеристика помехозащищенности

Основные сведения о широкополосных сигналах

1.1Определение ШПС. Применение ШПС в системах связи

Широкополосными (сложными, шумоподобными) сигналами (ШПС) называют такие сигналы, у которых произведения активной ширины спектра F на длительность T много больше единицы. Это произведение называется базой сигнала B. Для ШПС

B = FT>>1 (1)

Широкополосными сигналы иногда называют сложными в отличие от простых сигналов (например, прямоугольные, треугольные и т.д.) с В=1.Поскольку у сигналов с ограниченной длительностью спектр имеет неограниченную протяженность, то для определения ширины спектра используют различные методы и приемы.

Повышение базы в ШПС достигается путем дополнительной модуляции (или манипуляции) по частоте или фазе на времени длительности сигнала. В результате, спектр сигнала F (при сохранении его длительности T) существенно расширяется. Дополнительная внутрисигнальная модуляция по амплитуде используется редко.

В системах связи с ШПС ширина спектра излучаемого сигнала F всегда много больше ширины спектра информационного сообщения.

ШПС получили применение в широкополосных системах связи (ШПСС), так как:

· позволяют в полной мере реализовать преимущества оптимальных методов обработки сигналов;

· обеспечивают высокую помехоустойчивость связи;

· позволяют успешно бороться с многолучевым распространением радиоволн путем разделения лучей;

· допускают одновременную работу многих абонентов в общей полосе частот;

· позволяют создавать системы связи с повышенной скрытностью;

· обеспечивают электромагнитную совместимость (ЭМС) ШПСС с узкополосными системами радиосвязи и радиовещания, системами телевизионного вещания;

· обеспечивают лучшее использование спектра частот на ограниченной территории по сравнению с узкополосными системами связи.

Помехоустойчивость ШПСС

Она определяется широко известным соотношением, связывающим отношение сигнал-помеха на выходе приемника q 2 с отношением сигнал-помеха на входе приемника ρ 2:

q 2 = 2Вρ 2 (2)

где ρ 2 = Р с /Р п (Р с, Р п - мощности ШПС и помехи);

q 2 = 2E/ N п,Е - энергия ШПС, N п - спектральная плотность мощности помехи в полосе ШПС. Соответственно Е = Р с Т, a N п = Р п /F;

В- база ШПС.

Отношение сигнал-помеха на выходе q 2 определяет рабочие характеристики приема ШПС, а отношение сигнал-помеха на входе ρ 2 - энергетику сигнала и помехи. Величина q 2 может быть получена согласно требованиям к системе (10...30 дБ) даже если ρ 2 <<1. Для этого достаточно выбрать ШПС с необходимой базой В, удовлетворяющей (2). Как видно из соотношения (2), прием ШПС согласованным фильтром или коррелятором сопровождается усилением сигнала (или подавлением помехи) в 2Враз. Именно поэтому величину

К ШПС = q 2 /ρ 2 (3)

называют коэффициентом усиления ШПС при обработке или просто усилением обработки. Из (2), (3) следует, что усиление обработки К ШПС = 2В. В ШПСС прием информации характеризуется отношением сигнал помеха h 2 = q 2 /2, т.е.

h 2 = Вρ 2 з (4)

Соотношения (2), (4) являются фундаментальными в теории систем связи с ШПС. Они получены для помехи в виде белого шума с равномерной спектральной плотностью мощности в пределах полосы частот, ширина которой равна ширине спектра ШПС. Вместе с тем эти соотношения справедливы для широкого круга помех (узкополосных, импульсных, структурных), что и определяет их фундаментальное значение.

Таким образом, одним из основных назначений систем, связи с ШПС является обеспечение надежного приема информации при воздействии мощных помех, когда отношение сигнал-помеха на входе приемника ρ 2 может быть много меньше единицы. Необходимо еще раз отметить, что приведенные соотношения строго справедливы для помехи в виде гауссовского случайного процесса с равномерной спектральной плотностью мощности («белый» шум).

Основные виды ШПС

Известно большое число различных ШПС, свойства которых нашли отражение во многих книгах и журнальных статьях. ШПС подразделяются на следующие виды:

· частотно-модулированные (ЧМ) сигналы;

· многочастотные (МЧ) сигналы;

· фазоманипулированные (ФМ) сигналы (сигналы с кодовой фазовой модуляцией - КФМ сигналы);

· дискретные частотные (ДЧ) сигналы (сигналы с кодовой частотной модуляцией - КЧМ сигналы, частотно-манипулированные (ЧМ) сигналы);

· дискретные составные частотные (ДСЧ) (составные сигналы с кодовой частотной модуляцией - СKЧM сигналы).

Частотно-модулированные (ЧМ) сигналы являются непрерывными сигналами, частота которых меняется по заданному закону. На рисунке 1а, изображен ЧМ сигнал, частота которого меняется по V -образному закону от f 0 -F/2до f 0 +F/2, где f 0 - центральная несущая частота сигнала, F- ширина спектра, в свою очередь, равная девиации частоты F= ∆f д. Длительность сигнала равна Т.

Нарисунке 1б представлена частотно-временная (f, t)- плоскость, накоторой штриховкой приближенно изображено распределение энергии ЧМ сигнала по частоте и по времени.

База ЧМ сигнала по определению (1) равна:

B = FT=∆f д T (5)

Частотно-модулированные сигналы нашли широкое применение в радиолокационных системах, поскольку для конкретного ЧМ сигнала можно создать согласованный фильтр на приборах с поверхностными акустическими волнами (ПАВ). В системах связи необходимо иметь множество сигналов. При этом необходимость быстрой смены сигналов и переключения аппаратуры формирования и обработки приводят к тому, что закон изменения частоты становится дискретным. При этом от ЧМ сигналов переходят к ДЧ сигналам.

Многочастотные (МЧ) сигналы (рисунок 2а) являются суммой N гармоник u(t) ... u N (t), амплитуды и фазы которых определяются в соответствии с законами формирования сигналов. Начастотно-временной плоскости (рисунок 2б) штриховкой выделено распределение энергии одного элемента (гармоники) МЧ сигнала на частоте f k . Все элементы (все гармоники) полностью перекрывают выделенный квадрат со сторонами Fи T. База сигнала B равна площади квадрата. Ширина спектра элемента F 0 ≈1/Т. Поэтому база МЧ сигнала

B = F/F 0 =N (6)

Рисунок 1 - Частотно-модулированный сигнал и частотно-временная плоскость

т. е. совпадает с числом гармоник. МЧ сигналы являются непрерывными и для их формирования и обработки трудно приспособить методы цифровой техники. Кроме этого недостатка, они обладают также и следующими:

а) у них плохой пик-фактор (см. рисунок 2а);

б) для получения большой базы В необходимо иметь большое число частотных каналов N. Поэтому МЧ сигналы в дальнейшем не рассматриваются.

Фазоманипулированные (ФМ) сигналы представляют последовательность радиоимпульсов, фазы которых изменяются по заданному закону. Обычно фаза принимает два значения (0 или π). При этом радиочастотному ФМ сигналу соответствует видео- ФМ сигнал (рисунок 3а), состоящий из положительных и отрицательных импульсов. Если число импульсов N, то длительность одного импульса равна τ 0 = T/N, а ширина его спектра равна приближенно ширине спектра сигнала F 0 = 1/τ 0 =N/Т.На частотно-временной плоскости (рисунок 3б) штриховкой выделено распределение энергии одного элемента (импульса) ФМ сигнала. Все элементы перекрывают выделенный квадрат со сторонами F и Т. База ФМ сигнала

B = FT =F/τ 0 =N, (7)

т.е. B равна числу импульсов в сигнале.

Возможность применения ФМ сигналов в качестве ШПС с базами В = 10 4 ...10 6 ограничена в основном аппаратурой обработки. При использовании согласованных фильтров в виде приборов на ПАВ возможен оптимальный прием ФМ сигналов с максимальными базами Вмах=1000 ... 2000. ФМ сигналы, обрабатываемые такими фильтрами, имеют широкие спектры (порядка 10 ... 20 МГц) и относительно короткие длительности (60 ... 100 мкс). Обработка ФМ сигналов с помощью видеочастотных линий задержки при переносе спектра сигналов в область видеочастот позволяет получать базы В = 100 при F≈1 МГц, Т100 мкс.

Весьма перспективными являются согласованные фильтры на приборах с зарядовой связью (ПЗС). Согласно опубликованным данным с помощью согласованных фильтров ПЗС можно обрабатывать ФМ сигналы с базами 10 2 ... 10 3 при длительностях сигналов 10 -4 ... 10 -1 с. Цифровой коррелятор на ПЗС способен обрабатывать сигналы до базы 4∙10 4 .

Рисунок 2 - Многочастотныйсигнал и частотно-временная плоскость

Рисунок 3 - Фазоманипулированныйсигнал и частотно-временная плоскость

Следует отметить, что ФМ сигналы с большими базами целесообразно обрабатывать с помощью корреляторов (на БИС или на ПЗС). При этом, В = 4∙10 4 представляется предельной. Но при использовании корреляторов необходимо в первую очередь решить вопрос об ускоренном вхождении в синхронизм. Так как ФМ сигналы позволяют широко использовать цифровые методы и технику формирования и обработки, и можно реализовать такие сигналы с относительно большими базами, то поэтомy ФМ сигналы являются одним из перспективных видов ШПС.

Дискретные частотные (ДЧ) сигналы представляют последовательность радиоимпульсов (рисунок 4а), несущие частоты которых изменяются по заданному закону. Пусть число импульсов в ДЧ сигнале равно М, длительность импульса равна Т 0 =Т/М, его ширина спектра F 0 =1/Т 0 =М/Т. Над каждым импульсом (рисунок 4а) указана его несущая частота. На частотно-временной плоскости (рисунок 4б) штриховкой выделены квадраты, в которых распределена энергия импульсов ДЧ сигнала.

Как видно из рисунка 4б, энергия ДЧ сигнала распределена неравномерно на частотно-временной плоскости. База ДЧ сигналов

B = FT =МF 0 МТ 0 =М 2 F 0 Т 0 = М 2 (8)

поскольку база импульса F 0 T 0 = l. Из (8) следует основное достоинство ДЧ сигналов: для получения необходимой базы Вчисло каналов M = , т. е. значительно меньше, чем для МЧ сигналов. Именно это обстоятельство и обусловило внимание к таким сигналам и их применение в системах связи. Вместе с тем для больших баз В = 10 4 ... 10 6 использовать только ДЧ сигналы нецелесообразно, так как число частотных каналов М = 10 2 ... 10 3 , что представляется чрезмерно большим.

Дискретные составные частотные (ДСЧ) сигналы являются ДЧ сигналами, у которых каждый импульс заменен шумоподобным сигналом. На рисунке 5а изображен видеочастотный ФМ сигнал, отдельные части которого передаются на различных несущих частотах. Номера частот указаны над ФМ сигналом. На рисунке 5б изображена частотно-временная плоскость, на которой штриховкой выделено распределение энергии ДСЧ сигнала. Рисунок 5б по структуре не отличается от рисунка 4б, но для рисунка 5б площадь F 0 T 0 = N 0 -равна числу импульсов ФМ сигнала в одном частотном элементе ДСЧ сигнала. База ДСЧ сигнала

B = FT =М 2 F 0 Т 0 = N 0 М 2 (9)

Число импульсов полного ФМ сигнала N=N 0 М

Рисунок 4 - Дискретный частотныйсигнал и частотно-временная плоскость

Изображенный на рисунке 5 ДСЧ сигнал содержит в качестве элементов ФМ сигналы. Поэтому такой сигнал сокращенно будем называть ДСЧ-ФМ сигнал. В качестве элементов ДСЧ сигнала можно взять ДЧ сигналы. Если база элемента ДЧ сигнала B = F 0 T 0 = М 0 2 то база всего сигнала B = М 0 2 М 2

Рисунок 5 - Дискретный составной частотныйсигнал с фазовой манипуляцией ДСЧ-ФМ и частотно-временная плоскость.

Такой сигнал можно сокращенно обозначать ДСЧ-ЧМ. Число частотных каналов в ДСЧ-ЧМ сигнале равно М 0 М. Если ДЧ сигнал (см. рисунок 4), и ДСЧ-ЧМ сигнал имеют равные базы, то они имеют и одинаковое число частотных каналов. Поэтому особых преимуществ ДСЧ-ЧМ сигнал перед ДЧ сигналом не имеет. Но принципы построения ДСЧ-ЧМ сигнала могут оказаться полез­ными при построении больших систем ДЧ сигналов. Таким образом, наиболее перспективными ШПС для систем связи являются ФМ, ДЧ, ДСЧ-ФМ сигналы.

Помехоустойчивость – способность устройства (системы) принимать информацию без помех с заданной степенью достоверности, т.е. выполнять свои функции при наличии помех.

Помехоустойчивость оценивают интенсивностью помех, при которых нарушение функций устройства ещё не превышает допустимых пределов. Чем сильнее помеха, при которой устройство остаётся работоспособным, тем выше его помехоустойчивость.

Помехозащищенность – способность устройства (системы) препятствовать воздействию помех.

По помехоустойчивости и помехозащищённости коды разделяют на:

    Непомехоустойчивые

    Помехоустойчивые

    • Коды с обнаружением ошибок

      Корректирующие коды

    Помехозащищенные – коды при которых можно правильно выделить сообщение (помехоустойчивость + скрытность передачи).

7.Характеристики кодов: системы счисления, мощность, относительная скорость, вес.

основание системы исчисления :

Двоичные k=2;

Троичные k=3;

Четверичные k=4;

Модуляция – физическая структура

Кодирование – математическая структура

Троичная- в системах передачи, восьмиричная – для ЭВМ

Длина слова n (количество разрядов)

n=k+m, k – информационная система символов, m – проверочные символы

.Мощность кода – количество рабочих комбинаций, определяется длиной слова, рабочим кодом Mp; Mp =, Mmax=, k-основание степени исчисления.

Относительая скорость передачи кода. ,

Вес кода ω – количество единиц в двоичной кодовой комбинации

10011 -> w=3, 0001 -> w=1.

8.Понятие избыточность кода, кодовое расстояние, характеристика кодового расстояния. Свойства кодов в зависимости от величины кодового расстояния.

Избыточность кода- показывает какая часть из рабочих комбинаций используется в качестве рабочей

= (для двоичных кодов) =

Кодовое расстояние d (расстояние Хемминга) – количество разрядов, в которых одна комбинация отличается от другой. 1≤ d ≤ n

Кодовый переход . Форма кодового перехода связывает кодовое расстояние с корректировочной способностью. d = r+s+1 – формула кодового перехода, r – количество обнаруживаемых ошибок, s – количество исправляемых ошибок, r≥s Кодовый переход – количество разрядов, в которых одна комбинация отличается от другой:

Свойства кодов определяются по минимальному кодовому расстоянию.

Свойства кодов в соответствии с кодов ым расстоянием

Если d=1, то (r=0;s=0) – равнодоступный код

Если d=2, то (r=1;s=0)

Если d=3, то (r=1;s=1) (r=2;s=0)

Если d=4, то (r=3;s=0) (r=2;s=1)

9.Вероятностные характеристики кода .

Для оценки вероятности прохождения информации по КС используют вероятностные характеристики: Pош или Рпр – эти величины составляют полную группу. Поэтому Pош+Рпр=1 (вероятность правильного прохождения+вероятность ошибки=1)

Закон распределения помех

Параметры сигнала

Помехозащищенность характеризует способность системы связи противостоять воздействию помех. Помехозащищенность включает в себя такие понятия как скрытность и помехоустойчивость. Известно, что помехоустойчивость приема сигналов на фоне широкополосной помехи (Δfn >Δfc) типа белый гауссовский шум определяется только отношением энергии сигнала Ес к спектральной плотности шума N

q0 = 2E/N = 2PcT/N, (2.3)

и не зависит от вида сигнала. Поэтому при известной спектральной плотности помех помехоустойчивость оптимального приема ШПС к широкополосным помехам равна помехозащищенности оптимального приема узкополосных сигналов в этих условиях.

Если ширина спектра помехи не превышает ширину спектра сигнала, то применение ШПС обеспечивает увеличение отношения сигнал/помеха относительно узкополосных сигналов

Таким образом, отношение сигнал/помеха в ШСС улучшается пропорционально базе сигнала.

Помехоустойчивость ШСС определяется соотношением, связывающим отношение сигнал/помеха на выходе приемника q2 с отношением сигнал/помеха на его входе р2

где - отношение мощности ШПС к мощности помехи; q2 = 2E/Nп - отношение энергии ШПС Е к спектральной плотности мощности помехи Nп в полосе ШПС, т.е. Е = РсТ, Nп = Рп /Δfc.

Из данного соотношения следует, что прием ШПС сопровождается усилением сигнала в 2В раз.

Скрытность системы связи определяет ее способность противостоять обнаружению и измерению параметров сигнала. Если известно, что в данном диапазоне частот может работать система связи, но параметры ее неизвестны, то в этом случае можно говорить об энергетической скрытности системы связи, так как ее обнаружение возможно только с помощью анализа спектра. Скрытность ШСС связана с уменьшением спектральной плотности сигнала в результате увеличения его базы, т.е.

(2.6)

т.е. в В раз меньше, чем у узкополосного сигнала при равных мощностях и скорости передачи информации. Отношение спектральной плотности мощности сигнала Nc к спектральной плотности мощности входных шумов N приемника, обнаруживающего сигнал, составляет

(2.7)

т.е. в В раз меньше, чем у узкополосных сигналов. Поэтому в точке приема при неизвестной структуре ШПС вероятность его обнаружения на фоне шума чрезвычайно низка . Таким образом, чем шире спектр ШПС и больше его база, тем выше энергетическая и параметрическая скрытность системы связи.

Другие публикации

Однополосный связной передатчик
техника радиопередающих устройств развивается непрерывно и интенсивно. Это обусловлено определяющей ролью передатчиков в энергопотреблении, качестве работы, надежност...

Расчет характеристик САР
1. Изобразить принципиальную схему САР для заданного варианта. Составить функциональную схему САР. 2. По заданным в варианте статическим характер...

Многие думают, что защита электрических сигналов и передаваемой информации от электромагнитных помех обеспечивается исключительно экранированными проводами, удалением от источников помех и испытаниями приемо-передающей аппаратуры. Однако, это не так, существует много способов повысить помехоустойчивость измерительного канала или канала передачи информации. Зачастую проектировщики и разработчики упускают из вида важный моменты, о которых мы расскажем далее. Одним из недостатков проводных линий является низкая помехозащищенность и возможность простого несанкционированного подключения. Рассмотрим основные распространенные способы повышения помехоустойчивости.

Выбор среды передачи. Витая пара. Скручивание проводов между собой уменьшают волновое сопротивление проводников, как следствие, и наводки. Витая пара является достаточно помехоустойчивым кабелем. Большую роль при защите от помех играют и соединители, к которым подключается кабель, например, RJ45 для архитектуры Ethernet или RS-соединители со встроенными фильтрами. К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети. Коаксиальный кабель - более помехозащищенный, чем витая пара. Снижает собственное излучение, но дороже и сложнее в монтаже. Кабельные оптоволоконные каналы связи. Оптоволоконный кабель - требует преобразования электрического сигнала в световой, можно совмещать с кодером канала. Чрезвычайно высокий уровень помехозащищенности и отсутствие излучения при скоростях передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ВВФ, в том числе к ионизирующим излучениям.

Еще одним способом является, как это ни странно, резервирование каналов связи. Очень распространено, например, на атомных электростанциях в каналах АСУ ТП. Здесь хочется еще вспомнить 2 момента: маскировка от удара молнии провода ЛЭП под напряжением за заземленным проводником и ухудшении или улучшении качества приема при перемещении возле ТВ- или радиоантенны. Так что не всегда прокладка вашего кабеля в общем лотке или кабелепроводе играет губительную роль, иногда другие линии могут замаскировать вашу и взять большую часть энергии помехи на себя.

Выбор интерфейса. Унифицированный сигнал 4 – 20 мА уже несколько десятилетий ши­роко используется для передачи аналоговых сигналов при создании автома­тизированных систем управления. Достоинством данного стандарта является простота его реализации, возможность помехоустойчивой передачи аналого­вого сигнала на относительно большие расстояния. Это яркий пример удаления частоты передачи от характерных частот наиболее вероятных электромагнитных помех. Однако, совершенно ясно, что в современных цифровых САУ он не эффективен. В измеритель­ных системах унифицированный сигнал 4-20 мА может использоваться только для передачи сигнала с датчика к вторичному преобразователю. Помехозащищенность такого сигнала обеспечивает уход от ВЧ помех к постоянному току и простоте схемотехнических решений при фильтрации помех. Интерфейс RS-485 относительно слабо помехозащи­щен. USB лучше защищен, так как является последовательным интерфейсом. Однако, из-за слабых первых протоколов и неудачной в электрическом смысле конструкции соединителя (напоминает микрополосковую линию) достаточно часто сбивается при высокочастотных помехах. Повышение качества кодирования в USB 3.0 и переход к разъемам микро-USB значительно повышают его устойчивость к электромагнитным воздействиям. Ethernet и Intenet – с точки измерительных систем достоинства и недос­татки этих интерфейсов в целом аналогичны интерфейсу USB. Естественно, что при работе средств измерений в больших распределенных сетях эти ин­терфейсы сегодня практически не имеют альтернативы. GPIB или IEEE-488 - принцип работы интерфейса на байт-по­следовательным, бит-параллельным обменом информацией и этим объясняется его высокая помехоустойчивость по сравнению с пакетной передачей.

Логическая помехоустойчивость. На физическом уровне есть много приемов оцифровки сигнала для повышения помехоустойчивости. Например, использование определенного напряжения вместо нулевого проводника или "земли" для логического нуля. Еще лучше, если уровни будут смещены: +12В и -5В или +3В и +12В. Программная реализация помехозащищенности здесь заключается в использовании обратной связи для повторного опроса устройств при искажении информации и использовании помехозащищенных и восстанавливающих способов кодирования.

Еще немного приемов повышения помехозащищенности:

    применение дифференциального сигнала и способов приема;

    применение отдельных обратных проводников внутри кабеля;

    заземление неиспользуемых или резервных проводников;

    устранение разных потенциалов в различных точках заземляющих или общих проводников;

    увеличение мощности и амплитуд сигналов;

    трансляция одного интерфейса по другому, исключая минусы обоих;

    увеличение разности потенциалов между логическими уровнями;

    удаление передаваемых частот от характерного спектра помех;

    выбор методов срабатывания триггеров (по фронтам, амплитуде, приращению, частоте, фазе, определенной последовательности и т.д.);

    синхронизация;

    использование логической и сигнальной земель и их экранирование;

Список приемов не исчерпывается, пожалуй, ничем, кроме ресурсов, знаний и смекалки конкретного человека или организации.

Комбинируйте вместе с Emctestlab


Термином «шум» называют разного помехи, искажающие передаваемый сигнал и приводящие к потере информации.

Технические причины возникновения помех:

Плохое качество линий связи;

Незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам.

Наличие шума приводит к потере информации.

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важнейших идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным.

Избыточность кода это многократное повторение передаваемых данных.

Избыточность кода не может быть слишком большой. Это приведет к задержкам и удорожанию связи.

Теория кодирования как раз и позволяет получить такой код, который будет оптимальным: избыточность передаваемой информации будет минимально возможной , а достоверность принятой информации – максимальной .

Ранее отмечалось, что при передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Так, например, если вы попытаетесь в ветреную погоду передать речевое сообщению человеку, находящемуся от вас на значительном расстоянии, то оно может быть сильно искажено такой помехой, как ветер. Вообще, передача сообщений при наличии помех является серьезной теоретической и практической задачей. Ее значимость возрастает в связи с повсеместным внедрением компьютерных телекоммуникаций, в которых помехи неизбежны. При работе с кодированной информацией, искажаемой помехами, можно выделить следующие основные проблемы: установления самого факта того, что произошло искажение информации; выяснения того, в каком конкретно месте передаваемого текста это произошло; исправления ошибки, хотя бы с некоторой степенью достоверности.

Помехи в передачи информации - вполне обычное дело во всех сферах профессиональной деятельности и в быту. Один из примеров был приведен выше, другие примеры - разговор по телефону, в трубке которого «трещит», вождение автомобиля в тумане и т.д. Чаще всего человек вполне справляется с каждой из указанных выше задач, хотя и не всегда отдает себе отчет, как он это делает (т.е. неалгоритмически, а исходя из каких-то ассоциативных связей). Известно, что естественный язык обладает большойизбыточностью (в европейских языках - до 7%), чем объясняется большая помехоустойчивость сообщений, составленных из знаков алфавитов таких языков. Примером, иллюстрирующим устойчивость русского языка к помехам, может служить предложение «в словох всо глосноо зомононо боквой о». Здесь 26% символов «поражены», однако это не приводит к потере смысла. Таким образом, в данном случае избыточность является полезным свойством.

Избыточность могла бы быть использована и при передаче кодированных сообщений в технических системах. Например, каждый фрагмент текста («предложение») передается трижды, и верным считается та пара фрагментов, которая полностью совпала. Однако, большая избыточность приводит к большим временным затратам при передаче информации и требует большого объема памяти при ее хранении. Впервые теоретическое исследование эффективного кодирования предпринял К.Шеннон.

Первая теорема Шеннона декларирует возможность создания системы эффективного кодирования дискретных сообщений, у которой среднее число двоичных символов на один символ сообщения асимптотически стремится к энтропии источника сообщений (в отсутствии помех). Задача эффективного кодирования описывается триадой:

Х = {X 4i } - кодирующее устройство - В.

Здесь X, В - соответственно входной и выходной алфавит. Под множеством х i можно понимать любые знаки (буквы, слова, предложения). В - множество, число элементов которого в случае кодирования знаков числами определяется основанием системы счисления (например, т = 2). Кодирующее устройство сопоставляет каждому сообщению х i из Х кодовую комбинацию, составленную из п i символов множества В. Ограничением данной задачи является отсутствие помех. Требуется оценить минимальную среднюю длину кодовой комбинации.

Для решения данной задачи должна быть известна вероятность Р i появления сообщения х i , которому соответствует определенное количество символов п i алфавита В. Тогда математическое ожидание количества символов из В определится следующим образом:

n c р = п i Р i (средняя величина).

Этому среднему числу символов алфавита В соответствует максимальная энтропия Нтаx = n ср log т. Для обеспечения передачи информации, содержащейся в сообщениях Х кодовыми комбинациями из В, должно выполняться условие H4mах ≥ Н(х), или п cр log т - Р i log Р i . В этом случае закодированное сообщение имеет избыточность п cр H(x) / log т, n min = H(x) / log т.

Коэффициент избыточности

К u = (H max – H (x )) / H max = (n cp – n min) / n cp

Выпишем эти значения в виде табл. 1.8. Имеем:

N min = H (x ) / log2 = 2,85, K u = (2,92 - 2,85) / 2,92 = 0,024,

т.е. код практически не имеет избыточности. Видно, что среднее число двоичных символов стремится к энтропии источника сообщений.

Таблица 3.1 Пример к первой теореме Шеннона

N Рх i x i Код n i п i - Р i Рх i ∙ log Рх i
0,19 X 1 0,38 -4,5522
0,16 X 2 0,48 -4,2301
0.16 X 3 0,48 -4,2301
0,15 X 4 0,45 -4,1054
0,12 X 5 0,36 -3,6706
0,11 X 6 0,33 - 3,5028
0,09 X 7 0,36 -3,1265
0,02 X 8 0,08 -3,1288
Σ=1 Σ=2,92 Σ=2,85

Вторая теорема Шеннона гласит, что при наличии помех в канале всегда можно найти такую систему кодирования, при которой сообщения будут переданы с заданной достоверностью. При наличии ограничения пропускная способность канала должна превышать производительность источника сообщений.

Таким образом, вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Для дискретного канала с помехами теорема утверждает, что, если скорость создания сообщений меньше или равна пропускной способности канала, то существует код, обеспечивающий передачу со сколь угодно мглой частотой ошибок.

Доказательство теоремы основывается на следующих рассуждениях. Первоначально последовательность Х = {xi} кодируется символами из В так, что достигается максимальная пропускная способность (канал не имеет помех). Затем в последовательность из В длины п вводится r символов и по каналу передается новая последовательность из п + r символов. Число возможных последовательностей длины и + т больше числа возможных последовательностей длины п. Множество всех последовательностей длины п + r может быть разбито на п подмножеств, каждому из которых сопоставлена одна из последовательностей длины п. При наличии помехи на последовательность из п + r выводит ее из соответствующего подмножества с вероятностью сколь угодно малой.

Это позволяет определять на приемной стороне канала, какому подмножеству принадлежит искаженная помехами принятая последовательность длины п + r, и тем самым восстановить исходную последовательность длины п.

Эта теорема не дает конкретного метода построения кода, но указывает на пределы достижимого в создании помехоустойчивых кодов, стимулирует поиск новых путей решения этой проблемы.

Большой вклад в научную теорию связи внес советский ученый Владимир Александрович Котельников (1940-1950 г. XX века). В современных системах цифровой связи для борьбы с потерей информации при передаче:

Все сообщение разбивается на порции – блоки;

Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком;

В месте приема заново вычисляется контрольная сумма принятого блока, если она не совпадает с первоначальной, передача повторяется.

Таблица 3.2. Модель Клода Шеннона по передаче информации в технических системах связи

Дополнительная литература:

Тема урока Литература
Информация как единство науки и технологии. Могилев “Информатика”
Социальные аспекты информатики. “Социокультурные аспекты хакерства” (по материалам из Википедии-свободной электронной энциклопедии)
Правовые аспекты информатики. “Правовые аспекты информатики”(по материалам сайта “Информатика на 5”) http://www.5byte.ru/referat/zakon.php
Информация и физический мир. Информация и общество. «Введение в информатику» из учебника Н.Угринович «Информатика и информационные технологии» стр.12-17
Информатизация общества. по материалам электронного журнала “Мир ПК” http://schools.keldysh.ru/sch444/MUSEUM/pres/cw-01-2000.htm
Телекоммуникации в Башкортостане Портал «Республика Башкортостан» - раздел Телекоммуникации http://башкортостан.рф/potential/telecommunications/
Информационная безопасность общества и личности. «Информационная безопасность личности, общества, государства» (по материалам электронной книги В.А Копылова «Информационное право», главы 10-11) http://www.i-u.ru/biblio/archive/kopilov_iform/04.aspx
Тема 2.1. Различные уровни представлений об информации. Значения термина в различных областях знания. «Семантический подход к определению информации» (материалы из Википедии - свободной электронной энциклопедии, раздел «Информация в человеческом обществе») http://ru.wikipedia.org/wiki/%C8%ED%F4%EE%F0%EC%E0%F6%E8%FF